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SUMMARY 
The observed phenomenon of slip between the layers of a flowing slurry is modelled mathematically by a 
finite-element-based numerical technique. This technique enables us to quantify variables such as the slip 
velocity and shear stress distribution at the interlayer boundary and the pressure drop within the flow 
domain. 
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INTRODUCTION 

Flow regimes involving the transport of solid particles by the motion of carrying liquids are 
referred to as slurry flows. A major difficulty in the analysis of such flows is the wide range of 
slurry conditions which may be encountered. These conditions vary from nearly homogeneous 
suspensions to regimes with a substantial proportion of solids forming a bed. Owing to this 
difficulty, it is not possible to find a generally applicable correlation for the pressure gradient in a 
slurry pipeline. Thus a universally reliable design method for such systems does not exist. On the 
one hand the behaviour of uniformly suspended solids in a liquid can be reasonably well 
described by that of a fluid of density equal to that of the mixture and viscosity equal to that of the 
liquid.' At the other end of the spectrum, where the solids predominantly settle down to the lower 
parts of the flow domain, there is a strong particle-to-wall friction which retards the flow at this 
section. In this case the most reasonable approach is to describe the flow regime as a two-layer 
one in which there is a liquid-on-liquid slip at the interlayer boundary. This view is enforced by 
the experimental observations which indicate that in these cases the location and shape of an 
interlayer boundary can be identified. Adopting this approach, many investigators have pre- 
viously developed different two-layer slurry flow models.2-4 These models are all based on a 
force balance between the upper and lower layers of the flow domain. The dominant force at the 
interlayer boundary is the liquid-to-liquid friction. In practice the relevant friction coefficient 
cannot be measured and a review of the developed two-layer models shows that they all rely on 
estimating the interfacial friction coefficient. Various methods for deriving such an estimate are 
suggested by the  investigator^.^ - However, owing to the lack of corroborative evidence, the 
reliability of all such estimates is in doubt. In this paper we present a numerical scheme which can 
be used at first instance to evaluate the accuracy of any given liquid-to-liquid friction model. This 
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scheme can be further employed to quantify unmeasurable variables such as the interlayer slip 
velocity and shear stress distribution in a two-layer flow regime. Our analysis is based on a two- 
dimensional slurry flow. The flow domain is divided into upper and lower parts. The upper layer 
flows faster than the lower layer and there is a slip boundary interface between the two parts. 
Variables such as geometrical dimensions, flow characteristics, exterior boundary conditions, 
material properties and the location and shape of the interfacial boundary used in this work are 
all based on previously published experimental data.6 Early numerical experiments showed that 
for the case under study, owing to the relatively low viscosities, there is very little viscous heat 
generation and the temperature field within the flow domain remains constant. Thus here we 
present an isothermal analysis of the two-layer slurry flow. 

MATHEMATICAL MODEL 

In a Cartesian co-ordinate system the two-dimensional equations of continuity and motion 
representing the laminar, steady state, isothermal flow of non-Newtonian fluids are expressed as 

where V,  and V,, are the components of the velocity vector, P is the pressure and p is the material 
density. The shear-dependent viscosity is defined in the present analysis by the following 
constitutive equation: 

where q l  is a consistency (viscosity) coefficient, [ , (d )  is the second invariant of the rate-of- 
deformation tensor' and n is a power-law index. Equations (1)-(4) together with the prescribed 
boundary conditions form the basis for the mathematical simulation described in this paper. It 
should be noted that in the present two-layer modelling of slurry flow the liquid motion in both 
the upper and lower layers is governed by the same equations, i.e. equations (1)-(4). Thus we need 
to derive only one set of working equations which, by adopting the appropriate boundary 
conditions, can be used to model the flow conditions in the upper or lower section of the domain. 

WORKING EQUATIONS 

A detailed derivation of the working equations of the present finite element scheme is given 
elsewhere' and will be only briefly described here. The two-dimensional flow domain is divided 
into an upper and a lower section. This division is such that there is a narrow width of overlap 
between the two layers. As is described in the next section, this narrow region is used to model the 
slip between the layers. The two parts of the flow domain are then discretized into meshes of finite 
elements using nine-noded biquadratic quadrilaterals (Figure 1). Variables within every element 
(Q,) are represented by the Lagrange interpolation model using relations such as 

m 
I 

Vx= V i =  C N~ 1'1, etc., 
i =  1 

( 5 )  
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Figure 1.  Finite element discretizations of (a) lower and (b) upper flow layers 

where vx is a trial function representation of the variable V,, V: signifies the representation 
within the finite element, Ni is the interpolation function associated with node i, V i  is the nodal 
value of the variable V, and m is the number of nodes per element. A weak variational form of the 
governing equations is then derived on the basis of the weighted residual Galerkin method 
incorporating a penalty function formulation. This process leads to the construction of the 
elemental stiffness equations which are used as the working equations in the present numerical 
scheme. Analogous to matrix forms with repetition on index i we have 
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j =  1, . . . , rn, where re is the boundary confining a,, Ti is the unit outward vector normal to re 
and Vx, Vy are the old step values of the velocity components. 

Using isoparametric mapping, this system of equations is cast in a suitable local co-ordinate 
system and the integrals on the left-hand sides are evaluated for every element. This evaluation is 
based on a selectively reduced Gaussian quadrature where the penalty terms (i.e. terms involving 
2, the penalty parameter) are integrated using a lower number of integration points than the other 
terms.g The line integrals on the right-hand sides of the working equations vanish for all 
interelement boundaries and appear only on the exterior boundaries of the solution domain. 
Their appropriate treatment in any scheme is related to the nature of the boundary conditions to 
be used. A full discussion of boundary conditions used in our work is given later in the paper. 

NUMERICAL SOLUTION SCHEME 

The solution scheme starts by first considering one of the layers, say the lower layer. Using the 
working equations, the elemental stiffness equations for this section are derived and subsequently 
assembled. The resulting system of global equations becomes determinate after the imposition of 
the set of boundary conditions shown in Figure 2(a). To start the solutions at the upper boundary 
of the lower layer, an initial guess for the nodal velocities is given. The top thin layer of the 
elements at this section are 'virtual elements' used to model the slip condition. The concept of 
virtual elements has previously been applied for modelling convective heat flow boundary 
conditions" and later extended to model the momentum transfer in slip boundary situations.8 In 
this method, to the outside of the actual domain a layer of thin elements known as 'virtual 
elements' is attached. The Dirichlet condition V =  Vb is then applied to the outer boundaries of 
these elements. The stress at  the actual boundary is then related to the momentum transfer 
through the virtual elements, which are thin enough to allow the adoption of a linear momentum 
flux. Equating this virtual momentum flux to the required stress at  the boundary, we get 

WOLL u = u = 0.0 
X Y  

OutLet 

# u = 0.0 
( b )  

Y 

Uirt UOL elements L oyer 

't x 
Uir tuoL eLements l o y e r  

UolL u . = u = 0.0 
x u  

Figure 2. Boundary conditions and virtual element layers for (a) lower and (b) upper flow layers 
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where qv and d,  are the appropriate virtual viscosity and thickness of the virtual elements 
respectively, I is the gap width of the flow domain, V, is the tangential velocity along the domain 
boundary (i.e. the slip velocity to be calculated) and k, is the coefficient of slip friction. Thus the 
virtual viscosity for a virtual element should be chosen as 

vv=K,dvL (8) 
and for a curved surface the required result is 

where Rw is the local radius of curvature of the domain boundary and R,, is the log-mean radius 
of the domain and virtual surfaces. In the present work we have taken d,  to be 0.001 m, which is 
thin enough to make our assumptions valid without generating any computational problems (i.e. 
elements with very high aspect ratios). K ,  depends on the selected empirical liquid-on-liquid 
friction model. The selection of this coefficient is discussed in the next section. Imposing the 
described boundary conditions, the system of global equations for the lower section is solved. 
Since the flow regime is non-Newtonian, in order to obtain an accurate simulation of the flow 
field, the previous step is iterated, updating the viscosity via the constitutive equation. After the 
convergence of these iterations, the computed nodal velocities at the lower sides of the virtual 
elements are used as the boundary condition for the upper section, which in turn includes a layer 
of virtual elements at its lower boundary (Figure 2(b)). Imposition of the shown boundary 
conditions enables us to generate a velocity field for the upper section using an iterative procedure 
identical to that used for the lower part. Since these two layers overlap over the width of the 
virtual elements, it is possible to repeat the entire cycle until a converged flow field for the 
complete flow domain is obtained. In the present method all the used boundary conditions are of 
Dirichlet type and thus the solution scheme does not depend on the evaluation of the line 
integrals (equation (6) )  on the slip boundaries. This makes the procedure simpler than the other 
methods used to simulate the slip wall conditions." The converged velocity field is finally used to 
obtain the stress and pressure values within the flow domain via a variational recovery method.' 

APPLICATION OF THE NUMERICAL TECHNIQUE 

The described numerical algorithm can be employed to examine the validity of the liquid-on- 
liquid slip models suggested by different investigators. In order to do this, the friction coefficient 
K ,  derived from the suggested models is used in the numerical scheme to obtain the pressure drop 
along the flow domain. The comparison between the computed and experimentally measured 
pressure drops provides a basis for the critical examination of the friction coefficient and 
subsequently the adopted liquid-to-liquid friction model. If this comparison proves to be 
satisfactory, the method can be used to produce unmeasurable values such as the interlayer 
velocity distribution and shear stress within the flow domain. 

To illustrate the application of this method, we consider a slurry flow within a rectangular 
domain of 0.038 m width and 0 2  m length. The slurry consists of sodium carboxymethyl cellulose 
solution as the carrying liquid and gravel particles of 00057 m diameter as the suspended solid. 
We examine the case when the experimental observations show that there is a distinct interface 
between the upper and lower layers of the fluid at 0.0143 m above the base of the flow domain. In 
this case 21 % wt of the lower part consists of  solid^.'^ The flow velocity is 0.23 m s -  at the inlet 
of the domain. The material consistency q1 is 0.83 and the power-law index n is 0.64. The fluid 
density at the upper layer is 1000 and at the lower layer is 1825 (SI units). According to the 
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observations, the interfacial boundary can be accurately represented by the following sinusoidal 
curve: 

The experimentally measured pressure drop along this domain is 3095 Pam-’.6 We start with a 
commonly used liquid-to-liquid friction model given as 

y=O.0143+0.00285 sin(30ax) for O<x<O.2. (10) 

K ,  = 2/ C3.36 + 41og, ,, ( D l d ) ]  2, (1 1)  

(Velocity vectors and the flow domains are plotted w i n e  different scales) 

Figure 3. Simulated velocity fields for (a) lower and (b) upper flow layers 
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where D / d  is the ratio of domain to particle  diameter^.^ Other investigators have suggested that 
the value of K ,  from equation (1 1) should be modified by multiplying by 1 + y, where 

d / D  < 0.001 5, 
0.001 5 < d / D  < 0.1 5. 4 + 1-42 log, ( d / D ) ,  

However, these factors are tentative and are considered to be d o ~ b t f u l . ~  We start with a value of 
K,  calculated by equation (1 1) and use it to obtain a numerical pressure drop for the domain. This 
pressure drop is compared with the experimentally measured value. We then alter K ,  until a 
satisfactory comparison is achieved. The final results show that only after multiplying K ,  from 
equation (1 1) by a factor of 30 does the numerical model produce a pressure drop comparable to 
the measured value. This is nearly eight times the modification factor given by equation (12). On 
the basis of this value of K ,  we obtain the velocity fields shown in Figure 3 and the shear stress 
along the interfacial boundary (Figure 4). 
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